2,081 research outputs found

    On-chip spectropolarimetry by fingerprinting with random surface arrays of nanoparticles

    Full text link
    Optical metasurfaces revolutionized the approach to moulding the propagation of light by enabling simultaneous control of the light phase, momentum, amplitude and polarization. Thus, instantaneous spectropolarimetry became possible by conducting parallel intensity measurements of differently diffracted optical beams. Various implementations of this very important functionality have one feature in common - the determination of wavelength utilizes dispersion of the diffraction angle, requiring tracking the diffracted beams in space. Realization of on-chip spectropolarimetry calls thereby for conceptually different approaches. In this work, we demonstrate that random nanoparticle arrays on metal surfaces, enabling strong multiple scattering of surface plasmon polaritons (SPPs), produce upon illumination complicated SPP scattered patterns, whose angular spectra are uniquely determined by the polarization and wavelength of light, representing thereby spectropolarimetric fingerprints. Using um-sized circular arrays of randomly distributed {\mu}m-sized gold nanoparticles (density ~ 75 {\mu}m−^-2^2}) fabricated on gold films, we measure angular distributions of scattered SPP waves using the leakage radiation microscopy and find that the angular SPP spectra obtained for normally incident light beams different in wavelength and/or polarization are distinctly different. Our approach allows one to realize on-chip spectropolarimetry by fingerprinting using surface nanostructures fabricated with simple one-step electron-beam lithography.Comment: 22 pages, 5 figure

    Beam-Size Invariant Spectropolarimeters Using Gap-Plasmon Metasurfaces

    Get PDF
    Metasurfaces enable exceptional control over the light with surface-confined planar components, offering the fascinating possibility of very dense integration and miniaturization in photonics. Here, we design, fabricate and experimentally demonstrate chip-size plasmonic spectropolarimeters for simultaneous polarization state and wavelength determination. Spectropolarimeters, consisting of three gap-plasmon phase-gradient metasurfaces that occupy 120{\deg} circular sectors each, diffract normally incident light to six predesigned directions, whose azimuthal angles are proportional to the light wavelength, while contrasts in the corresponding diffraction intensities provide a direct measure of the incident polarization state through retrieval of the associated Stokes parameters. The proof-of-concept 96-{\mu}m-diameter spectropolarimeter operating in the wavelength range of 750-950nm exhibits the expected polarization selectivity and high angular dispersion. Moreover, we show that, due to the circular-sector design, polarization analysis can be conducted for optical beams of different diameters without prior calibration, demonstrating thereby the beam-size invariant functionality. The proposed spectropolarimeters are compact, cost-effective, robust, and promise high-performance real-time polarization and spectral measurements

    Searching for anomalous quartic gauge couplings at muon colliders using principle component analysis

    Full text link
    Searching for new physics~(NP) is one of the areas of high-energy physics that requires the most processing of large amounts of data. At the same time, quantum computing has huge potential advantages when dealing with large amounts of data. The principal component analysis~(PCA) algorithm may be one of the bridges connecting these two aspects. On the one hand, it can be used for anomaly detection, and on the other hand, there are corresponding quantum algorithms for PCA. In this paper, we investigate how to use PCA to search for NP. Taking the example of anomalous quartic gauge couplings in the tri-photon process at muon colliders, we find that PCA can be used to search for NP. Compared with the traditional event selection strategy, the expected constraints on the operator coefficients obtained by PCA based event selection strategy are even better.Comment: 14 pages, 6 figure

    Selection of Guided Surgery Dental Implant Systems Using Network Data Envelopment Analysis

    Get PDF
    [[abstract]]All dental implant system suppliers typically claim the advantages and superiority of their product’s specific attributes and functions. However, as assessment criteria are often inconsistent and conflicting, clinical dentists find it difficult to choose the most appropriate dental implant system. The present study used two-stage data envelopment analysis to measure the overall efficiency of individual dental implant systems and the relative efficiency of each phase of the selection process. The results of the present study can not only provide decision-making information for users, such as medical organizations, dentists, and patients, but may also inform guidelines for system producers to improve dental implant performance.[[notice]]補正完

    Demand Forecasting for Multichannel Fashion Retailers by Integrating Clustering and Machine Learning Algorithms

    Get PDF
    [[abstract]]In today’s rapidly changing and highly competitive industrial environment, a new and emerging business model—fast fashion—has started a revolution in the apparel industry. Due to the lack of historical data, constantly changing fashion trends, and product demand uncertainty, accurate demand forecasting is an important and challenging task in the fashion industry. This study integrates k-means clustering (KM), extreme learning machines (ELMs), and support vector regression (SVR) to construct cluster-based KM-ELM and KM-SVR models for demand forecasting in the fashion industry using empirical demand data of physical and virtual channels of a case company to examine the applicability of proposed forecasting models. The research results showed that both the KM-ELM and KM-SVR models are superior to the simple ELM and SVR models. They have higher prediction accuracy, indicating that the integration of clustering analysis can help improve predictions. In addition, the KM-ELM model produces satisfactory results when performing demand forecasting on retailers both with and without physical stores. Compared with other prediction models, it can be the most suitable demand forecasting method for the fashion industry.[[notice]]補正完

    A Note on Normal Forms of Quantum States and Separability

    Full text link
    We study the normal form of multipartite density matrices. It is shown that the correlation matrix (CM) separability criterion can be improved from the normal form we obtained under filtering transformations. Based on CM criterion the entanglement witness is further constructed in terms of local orthogonal observables for both bipartite and multipartite systems.Comment: 8 page

    Random-phase metasurfaces at optical wavelengths

    Get PDF
    Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector

    Stopping Light on a Defect

    Full text link
    Gap solitons are localized nonlinear coherent states which have been shown both theoretically and experimentally to propagate in periodic structures. Although theory allows for their propagation at any speed vv, 0≤v≤c0\le v\le c, they have been observed in experiments at speeds of approximately 50% of cc. It is of scientific and technological interest to trap gap solitons. We first introduce an explicit multiparameter family of periodic structures with localized defects, which support linear defect modes. These linear defect modes are shown to persist into the nonlinear regime, as {\it nonlinear defect modes}. Using mathematical analysis and numerical simulations we then investigate the capture of an incident gap soliton by these defects. The mechanism of capture of a gap soliton is resonant transfer of its energy to nonlinear defect modes. We introduce a useful bifurcation diagram from which information on the parameter regimes of gap soliton capture, reflection and transmission can be obtained by simple conservation of energy and resonant energy transfer principles.Comment: 45 pages, Submitted to Journal of the Optical Society
    • …
    corecore